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Abstract

An independent coalition in a graph G consists of two disjoint, indepen-
dent vertex sets V1 and V2, such that neither V1 nor V2 is a dominating set,
but the union V1 ∪ V2 is an independent dominating set of G. An indepen-
dent coalition partition of G is a partition {V1, . . . , Vk} of V (G) such that
for every i ∈ [k], either the set Vi consists of a single dominating vertex
of G, or Vi forms an independent coalition with some other part Vj . The
independent coalition number IC(G) of G is the maximum order of an inde-
pendent coalition coalition of G. The independent coalition graph ICG(G, π)
of π = {V1, . . . , Vk} (and of G) has the vertex set {V1, . . . , Vk}, vertices Vi and
Vj being adjacent if Vi and Vj form an independent coalition in G. In this
paper, a large family of graphs with IC(G) = 0 is described and graphs G
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with IC(G) ∈ {n(G), n(G)− 1} characterized. Some properties of ICG(G, π)
are presented. The independent coalition graphs of paths are characterized,
and the independent coalition graphs of cycles described.

Keywords: dominating set; independent set; independent coalition; independent
coalition number; independent coalition graph

AMS Subj. Class.: 05C69

1 Introduction

Let G = (V (G), E(G)) be a graph. A coalition in G consists of two disjoint sets V1

and V2 of vertices, such that neither V1 nor V2 is a dominating set, but the union
V1 ∪ V2 is a dominating set of G. A coalition partition of G, c-partition of G for
short, is a partition {V1, . . . , Vk} of V (G) such that for every i ∈ [k], either the set Vi

consists of a single dominating vertex of G, or Vi forms a coalition with some other
part Vj. Coalition partitions were introduced in 2020 in [8] and already extensively
researched in [3, 4, 9–12]. Very recently, total coalition partitions of graphs have
started to be explored in [1, 5] and connected coalition partitions of graphs in [2].

It is a generally accepted fact that the central concepts of graph domination
are the domination itself, the total domination, and the connected domination, see
the very comprehensive 2023 book [13] on the core concepts in domination which
focuses precisely on these three topics. It therefore makes sense also to explore
independent c-partitions in graphs which are defined just as c-partitions, except
that in addition independence is required of the sets involved. More precisely, an
independent coalition in G consists of two disjoint, independent vertex sets V1 and
V2, such that neither V1 nor V2 is a dominating set, but the union V1 ∪ V2 is an
independent dominating set of G. An independent c-partition of G is a partition
{V1, . . . , Vk} of V (G) such that for every i ∈ [k], either the set Vi consists of a single
dominating vertex of G, or Vi forms an independent coalition with some other part
Vj. Independent coalitions were introduced/mentioned in [8], see also [11]. However,
this concept was first explored in more detail in [15]. In this paper we continue the
research in this direction and proceed as follows.

In the rest of this section we define concepts needed and introduce the relevant
notation. In Section 2, we consider graphs with extremal independent coalition
numbers. We first consider graphs G with IC(G) = 0 and conclude the section by
graphs G with IC(G) ∈ {n(G), n(G) − 1}. We define and study the independent
coalition graph of a graph in Section 3. In Section 4 we characterize the independent
coalition graphs of paths, while in Section 5 we describe the independent coalition
graphs of cycles.

Let G be a graph and S ⊆ V (G). Then S is a dominating set if every vertex
in V (G) \ S has a neighbor in S, and S is an independent set if no two vertices
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from S are adjacent. By an independent dominating set we mean a set that is both,
dominating and independent. A vertex v of G which is adjacent to every other
vertex, is a dominating vertex of G. The independent coalition number, IC(G), of a
graph G is the maximum order an independent c-partition in G. If a graph G does
not admit an independent c-partition, then we set IC(G) = 0.

An idomatic partition of a graph is a partition of the vertices into independent
dominating sets. Such partitions seems to be considered for the first time in 2000
in the paper [7] under the name fall colorings. Indeed, an idomatic partition is a
proper coloring such that every vertex has every color in its open neighborhood. We
say that a graph is idomatic, if its vertex set can be partitioned into independent
dominating sets.

If G and H are graphs and k a positive integer, then G∪H denotes the disjoint
union of G and H and kG the disjoint union of k copies of G. In addition, G +H
is the join of G and G, that is, the graph obtained from G ∪H by adding all edges
gh, where g ∈ V (G) and h ∈ V (H). Finally, the order of a graph G will be denoted
by (G), and [n] stands for the set {1, . . . , n}.

2 Graphs G with IC(G) ∈ {0, n(G), n(G)− 1}
In the seminal paper [8] a problem was posed whether every graph G admits an inde-
pendent c-partition, that is, whether for every graph G we have IC(G) > 0. In [15],
Samadzadeh and Mojdeh answered this question in negative by demonstrating that
there exist graphs G with IC(G) = 0 as follows. Let Xn, n ≥ 4, be the graph
obtained from Kn with V (Kn) = {v1, . . . , vn} and two additional vertices vn+1, vn+2

by adding the edges vnvn+1, vnvn+2, and vn−1vn+1. See Fig. 1, where X5 is drawn.
Then it was proved in [15] that for n ≥ 4, IC(Xn) = 0.

v1

v2

v3

vn−1

vn

vn+1

vn+2

Figure 1: The graph X5; so n = 5 in the figure

In this section we present a significantly larger family of graphs which do not
admit independent c-partitions. For it, the following fact that immediately follows
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by the definition of an independent c-partition will be useful.

Lemma 2.1 Let x be a dominating vertex of a graph G. Then IC(G) > 0 if and
only if IC(G− x) > 0.

For a graph G, the graph Ĝ is a graph defined as follows. Its vertex set is
V (Ĝ) = V (G)∪{x, y} and the edge set is E(Ĝ) = E(G)∪{xu : u ∈ V (G)}∪{xy}.
Now the main result of this section reads as follows.

Theorem 2.2 Let G be a graph. Then IC(Ĝ) > 0 if and only if G = H ∪ sK1 for
some s ≥ 0 and some idomatic graph H.

Proof. We use the notation from the definition of Ĝ, hence V (Ĝ) = V (G)∪{x, y},
where x is a dominating vertex of Ĝ.

Assume first that IC(Ĝ) > 0. As x is a dominating vertex of Ĝ, Lemma 2.1
implies that IC(G ∪ K1) > 0. Set G′ = G ∪ K1, where we may assume that
V (K1) = {y}. Let π = {V1, . . . , Vk} be an independent c-partition of V (G′) and
assume without loss of generality that y ∈ V1. We distinguish two cases.

Case 1: V1 = {y}.
Since Vj, j ∈ {2, . . . , k}, must dominate G′ together with some other set from π, the
latter set must necessarily be V1. Since |V1| = 1 this in turn implies that Vj dominates
G. It follows that {V2, . . . , Vk} is an idomatic partition of G and consequently G is
an idomatic graph. Clearly, we can write it as G = G ∪ 0K1.

Case 2: |V1| ≥ 2.
In this case V1∩V (G) ̸= ∅, which implies that V1∩V (G) is an independent set of G
but it is not a dominating set of G, for otherwise V1 would dominate G′. Moreover,
V1 ∪ Vj must be an independent dominating set of G′ for every j ∈ {2, . . . , k}. This
in particular implies that each vertex of V1 ∩ V (G) must be an isolated vertex of G
and that each Vj, j ≥ 2, is an independent dominating set of H = G[V (G) \ V1]. If
|V1 ∩ V (G)| = s, then we can conclude that G = H ∪ sK1, where H is an idomatic
graph.

Conversely, assume that G = H ∪ sK1, where H is an idomatic graph and s ≥ 0.
Let {V1, . . . , Vk} be an idomatic partition of H and let S be the set of isolated
vertices of G, where S = ∅ in case s = 0. Then we claim that {S ∪ {y}, V1, . . . , Vk}
is an independent c-partition of G′. Indeed, S ∪{y} is clearly an independent set of
G′ and as each Vi, i ≥ 1, is a independent dominating set of H, we also have that
(S ∪ {y}) ∪ Vi is an independent dominating set of G′. By Lemma 2.1 we conclude

that IC(Ĝ) > 0. □

Let Hn, n ≥ 4, be the graph obtained from Kn−1 by attaching a pendant vertex

to one of the vertices of Kn−1. Then Ĥn
∼= Xn. Since the graph Hn is clearly not

idomatic, Theorem 2.2 implies that IC(Xn) = 0.
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Moreover, Theorem 2.2 yields a large variety of graphs which admit no indepen-
dent coalition partition. If G is an arbitrary connected and not idomatic graph,
then the theorem implies that IC(Ĝ) = 0. For instance, a cycle Cn is not idomatic
if and only if n is odd and not congruent modulo 3, cf. [14]. Additional families
of graphs that are not idomatic were constructed in [6], for instance graphs G with
χ(G) > δ(G) + 1. For more information on the variety of domination partitions
see [13, Chapter 12].

We now turn our attention to graphs with (almost) largest possible extremal
independent coalition number, that is, to graphs G with IC(G) ∈ {n(G), n(G)−1}.

The following observation follows directly from definitions, but it is useful be-
cause it enables a direct, polynomial verification whether IC(G) = n(G) holds for
a given graph G.

Observation 2.3 Let G be a graph without dominating vertices. Then IC(G) =
n(G) if and only if for any v ∈ V (G), there exists z ∈ V (G) with z ̸∈ N [v] such that
V (G) = N [v] ∪N [z].

If G has k dominating vertices, IC(G) = k+ IC(G′), where G′ is obtained from
G by removing the k dominating vertices. Note that G′ has no dominating vertices
and hence Observation 2.3 can be applied to G. It is then straightforward to see that
checking whether IC(G) = n(G) holds for a graph G can be performed in O(n(G)3)
time.

To check whether IC(G) = n(G)−1 holds, we can use the following proposition.
Its proof is straightforward and hence not included.

Proposition 2.4 Let G be a graph without dominating vertices. Then IC(G) =
n(G)− 1 if and only if the following properties hold.

(i) There exists a vertex a ∈ V (G) such that for all vertices b ̸= a the set {a, b}
is not an independent dominating set.

(ii) There exists two nonadjacent vertices x, y ∈ V (G), such that there exists a
vertex w ∈ V (G), w ̸= x, y, such that {w, x, y} is an independent dominating
set and for every vertex u ∈ V (G) with u ̸= x, y, the set {u, x, y} is an
independent dominating set or there exists a vertex v ̸= u such that {u, v} is
an independent dominating set.

Note that the condition (i) of Proposition 2.4 rules out the possibility IC(G) =
n(G), and then (ii) checks whether IC(G) = n(G) − 1 holds. As we already men-
tioned, checking whether IC(G) = n(G) holds (equivalently, condition (i)) can be
done in O(n(G)3) time. As for condition (ii), its testing for each pair of vertices x
and y can be done in O(n(G)3) time, leading to an O(n(G)5) time algorithm for
checking whether IC(G) = n(G)− 1 holds.
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3 Independent coalition graphs

Given an independent c-partition π = {V1, . . . , Vk} of a graph G, we can associate
to it a natural derived graph as follows. The independent coalition graph ICG(G, π)
of π (and of G) has the vertex set V (ICG(G, π)) = {V1, . . . , Vk}, and vertices Vi and
Vj are adjacent if Vi and Vj form an independent coalition in G. In the following we
present some general properties of the independent coalition graph.

Proposition 3.1 Let G be a graph and π be an independent c-partition of G with
|π| = k. Then the following holds.

(i) ∆(ICG(G, π)) ≤ ∆(G) + 1.

(ii) If k ≥ δ(G) + 2, then α(ICG(G, π)) ≥ k − δ(G)− 1.

Proof. Let π = {V1, . . . , Vk}.
(i) There is nothing to prove when ∆(ICG(G, π)) = 0. Hence assume that

∆(ICG(G, π)) > 0 and let Vi be a vertex of ICG(G, π) with degICG(G,π)(Vi) =
∆(ICG(G, π)) ≥ 1. Then |Vi| > 1 and Vi is not a dominating set. Therefore,
there exists a vertex v ∈ V (G) with no neighbor in Vi. If Vi and Vj form an inde-
pendent coalition, then Vi ∪ Vj is an independent dominating set, and therefore v
has at least one neighbor in Vj. It follows that

∆(ICG(G, π)) = degICG(G,π)(Vi) ≤ degG(v) + 1 ≤ ∆(G) + 1 ,

which proves (i).
(ii) Assume now that k ≥ δ(G)+2 and let v be a vertex ofG with degG(v) = δ(G).

As the sets from π are independent, at most δ(G)+1 of them contain a vertex from
NG[v]. Consequently, at least k−δ(G)−1 ≥ 1 sets of π do not contain a vertex from
NG[v]. It follows that no two of these k−δ(G)−1 sets form an independent coalition
and hence as the vertices of ICG(G, π) form an independent set. We conclude that
α(ICG(G, π)) ≥ k − δ(G)− 1. □

Consider the graph G obtained from the complete graph Kn with a pendant
edge. This graph G satisfies the equality in Proposition 3.1(i). Also the path graph
Pn satisfies the equality of Proposition 3.1(ii).

Proposition 3.2 Let G be a graph with δ(G) = 1 and let π be an independent c-
partition of G with |π| = k ≥ 3. Then ICG(G, π) is a spanning subgraph of K2,k−2.

Proof. Let π = {V1, . . . , Vk}, let x be a vertex of G of degree 1, and let y be its only
neighbor. We may without loss of generality assume that x ∈ V1 and y ∈ V2. Then
{V1, V2} /∈ E(ICG(G, π)). In addition, if i, j ≥ 3, i ̸= j, then x /∈ NG[Vi ∪ Vj] which
in turn implies that {Vi, Vj} /∈ E(ICG(G, π)). Hence {V3, . . . , Vk} is an independent
set of ICG(G, π) which together with the fact that {V1, V2} /∈ E(ICG(G, π)) implies
the result. □
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4 Independent coalition graphs of paths

In this section we consider independent coalitions in paths. Their independent
coalition numbers have already been determined as follows.

Theorem 4.1 [15] If n ≥ 1, then

IC(Pn) =


n; n ≤ 4,
4; n = 5,
5; n ∈ {6, 7, 8, 9},
6; n ≥ 10.

We say that a graph G is an ICG-graph if G is isomorphic to the independent
coalition graphs of some graph. In this section we complement Theorem 4.1 by
determining the ICG-graphs of paths.

Theorem 4.2 A graph G is an ICG-graph of some path if and only if

G ∈ {P1, P4, P5, 2P1, 2P2, 2P3, P1 ∪ P2, P2 ∪ P3} .

Proof. Throughout the proof we will assume that x1, . . . , xn are consecutive ver-
tices of Pn, n ≥ 1. Further, we will represent an independent c-partition π =
{V1, . . . , Vk} of Pn by the vector f(π) = (f1(π), . . . , fn(π)), where xi ∈ Vfi(π). As an
example consider the independent c-partition π = {{x1, x5}, {x2, x4}, {x3}, {x6}} of
P6. Then π is represented by the vector f(π) = (1, 2, 3, 2, 1, 4), where, for instance,
f4(π) = 2 means that x4 ∈ V2.

We first demonstrate that each of the graphs listed in the statement of the
theorem is an ICG-graph of some path. Considering P1 and P2 we obtain P1 and 2P1

as ICG-graphs. For the remaining six graphs, here are instances of their realizations:

� P4: the path P7 with the independent c-partition (1, 2, 3, 4, 3, 2, 1);

� P5: the path P11 with the independent c-partition (1, 2, 1, 5, 4, 3, 5, 4, 3, 2, 1);

� 2P2: the path P6 with the independent c-partition (1, 2, 3, 2, 1, 4);

� 2P3: the path P10 with the independent c-partition (2, 1, 5, 6, 1, 2, 4, 3, 2, 1);

� P1 ∪ P2: the path P3 with the independent c-partition (1, 2, 3);

� P2 ∪ P3: the path P9 with the independent c-partition (1, 2, 3, 4, 2, 1, 5, 1, 2).
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It remains to prove that no other graph but the above graphs is an ICG-graph of
some path. Since we have settled above all the cases for Pn, n ≤ 3, we may assume
in the rest that n ≥ 4.

We first recall that in [8, Lemma 1], it has been proved that C(Pn) ≤ 6. Since
IC(Pn) ≤ C(Pn), we have IC(Pn) ≤ 6. Consequently, Proposition 3.2 implies that
independent coalition graphs of paths are spanning subgraphs of K2,r with r ≤ 4.
In addition, since we have assumed that n ≥ 4, no independent coalition graph of
Pn contains isolated vertices. By inspection we find the following 20 non-isomorphic
spanning subgraphs of K2,r, where r ≤ 4 with minimum degree at least 1:

P1, P4, P5, 2P1, 2P2, 2P3, P1 ∪ P2, P2 ∪ P3, (1)

P3, K2,2, K2,3, K2,4, K2,3 − e,K2,4 − e,K1,3 ∪ P2, F1, F2, F3, F4, F5, (2)

where the graphs Fi, i ∈ [5], are depicted in Fig. 2.

F1 F2 F3 F4 F5

Figure 2: The graphs Fi, i ∈ [5]

For the graphs from (1) we have established above that they are ICG-graphs of
paths, hence we need to prove that neither of the graphs from (2) is an ICG-graph
of some path.

Consider first P3 and suppose that it is a an ICG-graph of some path Pn with an
independent c-partition π = {V1, V2, V3}. We may assume without loss of generality
that f1(π) = 1 and f2(π) = 2. Then V2∪V3 is an independent dominating set, hence
f3(π) = 1. Since also V1 ∪ V3 is an independent dominating set, we have f4(π) = 2.
Continuing in this manner we conclude that V3 = ∅, a contradiction.

Consider second K2,3 and suppose that it is a an ICG-graph of some path Pn

with an independent c-partition π = {V1, . . . , V5}. Assume without loss of generality
that {1, 2}, {3, 4, 5} is the bipartition of K2,3, where i ∈ Vi for i ∈ [5]. Let j be an
arbitrary index such that fj(π) = 1. Then fj−1(π) = 2 (if j−1 ≥ 1) and fj+1(π) = 2
(if j+1 ≤ n). In this way we see that V3 = V4 = V5 = ∅, a contradiction. The same
argument applies to K2,2 and K2,4.

Consider next K2,3 − e and suppose that it is a an ICG-graph of some path Pn

with an independent c-partition π = {V1, . . . , V5}. Assume without loss of generality
that {1, 2}, {3, 4, 5} is the bipartition of K2,3, where {2, 5} /∈ E(K2,3)−e, and i ∈ Vi
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for i ∈ [5]. Let j be such that fj(π) = 1. Then fj−1(π) = 2 (if j − 1 ≥ 1) and
fj+1(π) = 2 (if j + 1 ≤ n). Assume without loss of generality that j + 1 < n − 1
and that ℓ ≥ j + 2 is the smallest index such that fℓ(π) ∈ {3, 4, 5}. Then necessary
fℓ(π) = 3. Thus we have fℓ−2(π) = 1, fℓ−1(π) = 2, and fℓ(π) = 3, which in turn
implies that fℓ+1(π) ∈ {4, 5} (if ℓ + 1 ≤ n). But then at least one of V1 ∪ V4 and
V1∪V5 is not a dominating set because one of these sets does not dominate xℓ. This
contradiction proves that K2,3 − e is not an ICG-graph of some path. A parallel
argument can be used also for K2,4 − e as well as for F1, F2, and F3. (Note that in
each of these graphs there exists a vertex from the smaller bipartition set adjacent
to all the vertices from the other bipartition set.)

It remains to consider the graphs K1,3 ∪ P2, F4, and F5. As the arguments are
similar, let us consider in detail onlyK1,3∪P2. Suppose on the contrary thatK1,3∪P2

is a an ICG-graph of some path Pn with an independent c-partition π = {V1, . . . , V6}.
Assume without loss of generality that the vertices of K1,3 are from [4] with 1 being
the vertex of degree 3, and that V (P2) = {5, 6}, where i ∈ Vi for i ∈ [6]. Consider
a vertex xj with fj(π) = 1 and assume without loss of generality that j < n − 1.
Then fj+1(π) ∈ {5, 6}. If fj+2(π) = 1, we repeat the pattern. Hence assume that
fj+2(π) ∈ {2, 3, 4}. But now no matter what is the value of fj+3(π) (if j + 3 ≤ n),
at least one of the sets V1 ∪ V2, V1 ∪ V3, and V1 ∪ V4 is not a dominating set because
at least one of them does not dominate xj+2. This contradiction completes the
argument for K1,3 ∪ P2. □

5 Independent coalition graphs of cycles

Here we describe the independent coalition graphs of cycles, henceforth called ICG-
graphs of cycles. Similar to the result for paths, the number of ICG-graphs of cycles
is finite. This fact follows from the following known result that gives the independent
coalition numbers of cycles.

Theorem 5.1 [15, Theorem 3.11] If n ≥ 3, then

IC(Cn) =


n; n ≤ 6,
5; n = 7,
6; n ≥ 8.

Just as done for paths, we denote the consecutive vertices of Cn by x1, . . . , xn and
represent an independent c-partition π = {V1, . . . , Vk} of Cn by the vector f(π) =
(f1(π), . . . , fn(π)), where xi ∈ Vfi(π). As an example consider the independent c-
partition π = {{x1, x3}, {x2, x4}, {x5}, {x6}, {x7}} of C7. Then π is represented
by the vector f(π) = (1, 2, 1, 2, 3, 4, 5), where, for instance, f5(π) = 3 means that
x5 ∈ V3.
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Clearly, the only cycle whose ICG-graph contains an isolated vertex is C3, more
precisely, ICG(C3, π) = 3K1, where π is the unique independent c-partition of C3.
For longer cycles we have the following:

Proposition 5.2 Let π be an independent c-partition of Cn, n ≥ 4. Then ICG(Cn, π)
is a spanning subgraph of one of the graphs (K1 ∪K2) +K1, (K1 ∪K2) + 2K1, and
(K1 ∪K2) + 3K1.

Proof. Let π = {V1, . . . , Vk} be an independent c-partition of Cn. Since n ≥ 4,
ICG(Cn) has no isolated vertices. Moreover, k = |π| ≥ 4. Indeed, if we would have
|π| = 3, then there exist three consecutive vertices of Cn such that they respectively
belong to the three parts of π. We may assume without loss of generality that
fi(π) = i for i ∈ [3]. But then neither V2 ∪ V1 nor V2 ∪ V3 is an independent set, a
contradiction.

We have thus seen that k ≥ 4. On the other hand, k ≤ 6 Theorem 5.1. Just
as above, there exist three consecutive vertices of Cn such that they respectively
belong to the three parts of π and we may assume that fi(π) = i for i ∈ [3].
Then V2V1 /∈ E(ICG(Cn, π)) and V2V1 /∈ E(ICG(Cn, π)). It is possible however
that V1V3 ∈ E(ICG(Cn, π)). If k = 4, then ICG(Cn, π) is a spanning subgraph of
(K1 ∪K2) + K1. Assume k = 5. Then V4 ∪ V5 is not a dominating set since the
union does not dominate x2. In this case ICG(Cn, π) is a spanning subgraph of
(K1 ∪K2)+2K1. Assume finally that k = 6. Then by the same argument Vj ∪Vj′ is
not a dominating set for any j, j′ ∈ {4, 5, 6}, j ̸= j′. Hence in this case ICG(Cn, π)
is a spanning subgraph of (K1 ∪K2) + 3K1. □

The variety of the ICG-graphs of cycles thus appears larger than the ICG-graphs
of paths. Therefore, we will not make a precise analysis of which graphs from
Proposition 5.2 are ICG-graphs of cycles. Instead, we conclude with two ICG-graphs
of cycles which are not ICG-graphs of paths.

� C5: the cycle C5 with the independent c-partition (1, 2, 3, 4, 5);

� 3P2: the cycle C6 with the independent c-partition (1, 2, 3, 4, 5, 6).

Other realizations of the same graph can also exist. For instance, the graph 3P2

can be realized as the ICG-graph of the cycle C9 with the independent c-partition
(1, 3, 5, 1, 3, 5, 2, 4, 6) and as the ICG-graph of the cycle C12 with the independent
c-partition (1, 3, 5, 1, 3, 5, 2, 4, 6, 2, 4, 6).
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by the Slovenian Research Agency (ARIS) under the grants P1-0297, J1-2452, and
N1-0285.

References

[1] S. Alikhani, D. Bakhshesh, H. Golmohammadi, Total coalitions in graphs,
arXiv:2211.11590v2 [math.CO] (10 Dec 2022).

[2] S. Alikhani, D. Bakhshesh, H. Golmohammadi, E.V. Konstantinova, Connected
coalitions in graphs, Discuss. Math. Graph Theory (2023) doi.org/10.7151/
dmgt.2509.

[3] S. Alikhani, H. Golmohammadi, E. Konstantinova, Coalition of cubic graphs of
order at most 10, Commun. Comb. Optim. (2023) 10.22049/cco.2023.28328.
1507.

[4] D. Bakhshesh, M.A. Henning, D. Pradhan, On the coalition number of trees,
Bull. Malays. Math. Sci. Soc. 46 (2023) Paper No. 95.

[5] J. Barát, Z.L. Blázsik, General sharp upper bounds on the total coalition num-
ber, Discuss. Math. Graph Theory (2023) doi.org/10.7151/dmgt.2511.

[6] E.J. Cockayne, S.T. Hedetniemi, Disjoint independent dominating sets in
graphs, Discrete Math. 15 (1976) 213–222.

[7] J.E. Dunbar, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, J. Knisely,
R.C. Laskar, D.F. Rall, Fall colorings of graphs, J. Combin. Math. Combin.
Comput. 33 (2000) 257–273.

[8] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, R. Mohan, In-
troduction to coalitions in graphs, AKCE Int. J. Graphs Combin. 17 (2020)
653–659.

[9] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, R. Mohan, Up-
per bounds on the coalition number, Australas. J. Combin. 80 (2021) 442–453.

[10] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, R. Mohan, Self-
coalition graphs, Opuscula Math. 43 (2023) 173–183.

11



[11] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, R. Mohan,
Coalition graphs, Commun. Combin. Optim. 8 (2023) 423–430.

[12] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, R. Mohan,
Coalition graphs of paths, cycles, and trees, Discuss. Math. Graph Theory
43 (2023) 931–946.

[13] T.W. Haynes, S.T. Hedetniemi, M.A. Henning, Domination in Graphs: Core
Concepts, Springer, 2023.

[14] H. Kaul, C. Mitillos, On graph fall-coloring: Existence and constructions,
Graphs Combin. 35 (2019) 1633–1646.

[15] M.R. Samadzadeh, A.M. Doost, Independent coalition in graphs, arXiv:2306.
02079 [math.CO] (3 Jun 2023).

12


